
MATH 521A: Abstract Algebra
Exam 1 Solutions

1. Richard Dedekind, a pioneer of ring theory, was born in 1831 and died in 1916. Use the Euclidean Algorithm
to find gcd(1831, 1916) and to express that gcd as a linear combination of 1831, 1916.

We first calculate 1916 = 1 · 1831 + 85, 1831 = 21 · 85 + 46, 85 = 1 · 46 + 39, 46 = 1 · 39 + 7, 39 = 5 · 7 + 4,
7 = 1 · 4 + 3, 4 = 1 · 3 + 1. Hence the gcd is 1, and 1 = 4− 3 = 4− (7− 4) = 2 · 4− 7 = 2 · (39− 5 · 7)− 7 =
2 · 39 − 11 · 7 = 2 · 39 − 11 · (46 − 39) = 13 · 39 − 11 · 46 = 13 · (85 − 46) − 11 · 46 = 13 · 85 − 24 · 46 =
13 · 85− 24 · (1831− 21 · 85) = −24 · 1831 + 517 · 85 = −24 · 1831 + 517(1916− 1831) = 517 · 1916− 541 · 1831.

2. Let a,m, n ∈ N with gcd(m,n) = 1. Prove that mx ≡ a (mod n) has a solution x.

Because gcd(m,n) = 1, there are integers s, t such that ms + nt = 1. Multiplying both sides by a we get
msa+ nta = a, which rearranges as m(sa)− a = n(−ta). We take x = sa, and have mx− a = n(−ta). Since
−ta is an integer, n|(mx− a). Hence mx ≡ a (mod n), as desired.

3. Let n ∈ N, and suppose that [a] is a nonzero element of Zn. Prove that [a] is a unit if and only if [a] is not
a zero divisor.

There are two directions to prove, and generally the two proofs will require different methods.

Suppose first that [a] is a unit. Hence there is some [b] ∈ Zn such that [b]� [a] = [1]. Now suppose, by way
of contradiction, that [a] is also a zero divisor. Then there is some nonzero [c] ∈ Zn such that [a]� [c] = [0].
But now [c] = [1]� [c] = ([b]� [a])� [c] = [b]� ([a]� [c]) = [b]� [0] = [0], a contradiction. Hence [a] is not a
zero divisor.

Suppose now that [a] is not a unit. Set d = gcd(a, n). We may write a = da′, n = dn′. By Theorem 2.10,
we know that d > 1, and hence 1 < n′ < n and in particular [n′] 6= [0]. We have [a] � [n′] = [da′] � [n′] =
[da′n′] = [a′n] = [0], hence [a] is a zero divisor.

4. Let p be a positive prime. Use the Fundamental Theorem of Arithmetic to prove that there do not exist
a, b ∈ N with a2 = pb2.

By considering all the primes that divide either a, b, or p, we write a = ps0ps11 · · · p
sk
k , b = pt0pt11 · · · p

tk
k , p =

p1p01 · · · p0k. Suppose by way of contradiction that a2 = pb2. Then we have p2s0p2s11 · · · p2skk = (p1)(p2t0p2t11 · · · p
2tk
k ).

By the FTA, these are unique up to order and units. In particular, looking at the power of p, on the left we
have 2s0 and on the right we have 1 + 2t0. These cannot be equal, since the former is even and the latter is
odd. This contradiction proves the desired result.

5. Working in Z21, find the multiplicative inverse of [8], and use this to solve the modular equation [8]�[x] = [13].

There are twelve units in Z21, so we just try them all to see which multiplies by [8] to give [1].
ALTERNATIVE: Use Euclidean Algorithm to find s, t with 8s + 21t = 1. Then [s] = [8]−1.
It turns out that [8]−1 = [8]. Hence we compute [8] · [8] · [x] = [8] · [13], so [x] = [8] · [13] = [20].

6. Working in Zn, prove that the following holds for all a, b, c, d:

([a]⊕ [b])� ([c]⊕ [d]) = ([a]� [c])⊕ ([a]� [d])⊕ ([b]� [c])⊕ ([b]� [d])

For convenience, set [e] = [c]⊕ [d], and apply the distributive property to get

([a]⊕ [b])� [e] = ([a]� [e])⊕ ([b]� [e]) (1)

We now apply the distributive property two more times, to get

[a]� [e] = ([a]� [c])⊕ ([a]� [d]) (2)

[b]� [e] = ([b]� [c])⊕ ([b]� [d]) (3)

Now we plug (2) and (3) into (1) to get the desired result.


