MATH 521A: Abstract Algebra

Exam 1 Solutions

1. Richard Dedekind, a pioneer of ring theory, was born in 1831 and died in 1916. Use the Euclidean Algorithm to find $\operatorname{gcd}(1831,1916)$ and to express that gcd as a linear combination of $1831,1916$.
We first calculate $1916=1 \cdot 1831+85,1831=21 \cdot 85+46,85=1 \cdot 46+39,46=1 \cdot 39+7,39=5 \cdot 7+4$, $7=1 \cdot 4+3,4=1 \cdot 3+1$. Hence the gcd is 1 , and $1=4-3=4-(7-4)=2 \cdot 4-7=2 \cdot(39-5 \cdot 7)-7=$ $2 \cdot 39-11 \cdot 7=2 \cdot 39-11 \cdot(46-39)=13 \cdot 39-11 \cdot 46=13 \cdot(85-46)-11 \cdot 46=13 \cdot 85-24 \cdot 46=$ $13 \cdot 85-24 \cdot(1831-21 \cdot 85)=-24 \cdot 1831+517 \cdot 85=-24 \cdot 1831+517(1916-1831)=517 \cdot 1916-541 \cdot 1831$.
2. Let $a, m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1$. Prove that $m x \equiv a(\bmod n)$ has a solution x.

Because $\operatorname{gcd}(m, n)=1$, there are integers s, t such that $m s+n t=1$. Multiplying both sides by a we get $m s a+n t a=a$, which rearranges as $m(s a)-a=n(-t a)$. We take $x=s a$, and have $m x-a=n(-t a)$. Since $-t a$ is an integer, $n \mid(m x-a)$. Hence $m x \equiv a(\bmod n)$, as desired.
3. Let $n \in \mathbb{N}$, and suppose that $[a]$ is a nonzero element of \mathbb{Z}_{n}. Prove that $[a]$ is a unit if and only if $[a]$ is not a zero divisor.
There are two directions to prove, and generally the two proofs will require different methods.
Suppose first that $[a]$ is a unit. Hence there is some $[b] \in \mathbb{Z}_{n}$ such that $[b] \odot[a]=[1]$. Now suppose, by way of contradiction, that $[a]$ is also a zero divisor. Then there is some nonzero $[c] \in \mathbb{Z}_{n}$ such that $[a] \odot[c]=[0]$. But now $[c]=[1] \odot[c]=([b] \odot[a]) \odot[c]=[b] \odot([a] \odot[c])=[b] \odot[0]=[0]$, a contradiction. Hence $[a]$ is not a zero divisor.
Suppose now that $[a]$ is not a unit. Set $d=\operatorname{gcd}(a, n)$. We may write $a=d a^{\prime}, n=d n^{\prime}$. By Theorem 2.10, we know that $d>1$, and hence $1<n^{\prime}<n$ and in particular $\left[n^{\prime}\right] \neq[0]$. We have $[a] \odot\left[n^{\prime}\right]=\left[d a^{\prime}\right] \odot\left[n^{\prime}\right]=$ $\left[d a^{\prime} n^{\prime}\right]=\left[a^{\prime} n\right]=[0]$, hence $[a]$ is a zero divisor.
4. Let p be a positive prime. Use the Fundamental Theorem of Arithmetic to prove that there do not exist $a, b \in \mathbb{N}$ with $a^{2}=p b^{2}$.
By considering all the primes that divide either a, b, or p, we write $a=p^{s_{0}} p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}, b=p^{t_{0}} p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}, p=$ $p^{1} p_{1}^{0} \cdots p_{k}^{0}$. Suppose by way of contradiction that $a^{2}=p b^{2}$. Then we have $p^{2 s_{0}} p_{1}^{2 s_{1}} \cdots p_{k}^{2 s_{k}}=\left(p^{1}\right)\left(p^{2 t_{0}} p_{1}^{2 t_{1}} \cdots p_{k}^{2 t_{k}}\right)$. By the FTA, these are unique up to order and units. In particular, looking at the power of p, on the left we have $2 s_{0}$ and on the right we have $1+2 t_{0}$. These cannot be equal, since the former is even and the latter is odd. This contradiction proves the desired result.
5. Working in \mathbb{Z}_{21}, find the multiplicative inverse of $[8]$, and use this to solve the modular equation $[8] \odot[x]=[13]$.

There are twelve units in \mathbb{Z}_{21}, so we just try them all to see which multiplies by [8] to give [1].
ALTERNATIVE: Use Euclidean Algorithm to find s, t with $8 s+21 t=1$. Then $[s]=[8]^{-1}$.
It turns out that $[8]^{-1}=[8]$. Hence we compute $[8] \cdot[8] \cdot[x]=[8] \cdot[13]$, so $[x]=[8] \cdot[13]=[20]$.
6. Working in \mathbb{Z}_{n}, prove that the following holds for all a, b, c, d :

$$
([a] \oplus[b]) \odot([c] \oplus[d])=([a] \odot[c]) \oplus([a] \odot[d]) \oplus([b] \odot[c]) \oplus([b] \odot[d])
$$

For convenience, set $[e]=[c] \oplus[d]$, and apply the distributive property to get

$$
\begin{equation*}
([a] \oplus[b]) \odot[e]=([a] \odot[e]) \oplus([b] \odot[e]) \tag{1}
\end{equation*}
$$

We now apply the distributive property two more times, to get

$$
\begin{align*}
& {[a] \odot[e]=([a] \odot[c]) \oplus([a] \odot[d])} \tag{2}\\
& {[b] \odot[e]=([b] \odot[c]) \oplus([b] \odot[d])} \tag{3}
\end{align*}
$$

Now we plug (2) and (3) into (1) to get the desired result.

